Coins, Quantum Measurements, and Turing's Barrier

نویسندگان

  • Cristian S. Calude
  • Boris Pavlov
چکیده

Is there any hope for quantum computing to challenge the Turing barrier, i.e. to solve an undecidable problem, to compute an uncomputable function? According to Feynman’s ’82 argument, the answer is negative. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that quantum computing is theoretically capable of computing uncomputable functions. Turing proved that there is no “halting (Turing) machine” capable of distinguishing between halting and non-halting programs (undecidability of the Halting Problem). Halting programs can be recognized by simply running them; the main difficulty is to detect non-halting programs. In this paper a mathematical quantum “device” (with sensitivity ε) is constructed to solve the Halting Problem. The “device” ∗A preliminary version of this paper has appeared in [9]. †Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand. E-mail: [email protected]. ‡Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand. E-mail: [email protected]. works on a randomly chosen test-vector for T units of time. If the “device” produces a click, then the program halts. If it does not produce a click, then either the program does not halt or the test-vector has been chosen from an undistinguishable set of vectors Fε,T . The last case is not dangerous as our main result proves: the Wiener measure of Fε,T constructively tends to zero when T tends to infinity. The “device”, working in time T , appropriately computed, will determine with a pre-established precision whether an arbitrary program halts or not. Building the “halting machine” is mathematically possible. To construct our “device” we use the quadratic form of an iterated map (encoding the whole data in an infinite superposition) acting on randomly chosen vectors viewed as special trajectories of two Markov processes working in two different scales of time. The evolution is described by an unbounded, exponentially growing semigroup; finally a single measurement produces the result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coins, Quantum Measurements, and Turing’s Barrier: Preliminary Version

If you can look into the seeds of time, And say which grain will grow, and which will not, Speak then to me.

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Energy states and exchange energy of coupled double quantum dot in a magnetic field

The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...

متن کامل

Self-Consistent Analysis of Barrier Characterization Effects on Quantum Well Laser Internal Performance

In this paper, a numerical study of barrier characterization effects on the high-temperature internal performance of an InGaAsP multi-quantum well laser is presented. The softwareused for this purpose self-consistently combines the three-dimensional simulation of carrier transports, self-heating, and optical waveguiding. The laser model calculates all relevant physical mechanisms, including the...

متن کامل

Quantum current modeling in nano-transistors with a quantum dot

Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information Processing

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2002